On Minimum Bisection and Related Cut Problems in Trees and Tree-Like Graphs

نویسندگان

  • Cristina G. Fernandes
  • Tina Janne Schmidt
  • Anusch Taraz
چکیده

Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this problem for trees and prove that the minimum bisection width of every tree T on n vertices satisfies MinBis(T ) ≤ 8n∆(T )/ diam(T ). Second, we generalize this to arbitrary graphs with a given tree decomposition (T,X ) and give an upper bound on the minimum bisection width that depends on the structure of (T,X ). Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Minimum Bisection and Related Partition Problems in Graphs with Bounded Tree Width

Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the number of edges between these two sets. We consider this problem in bounded degree graphs with a given tree decomposition (T,X ) and prove an upper bound for their minimum bisection width in terms of the structure and width of (T,X ). When (T,X ) is provided as ...

متن کامل

On the Structure of Graphs with Large Minimum Bisection

Bounded degree trees and bounded degree planar graphs on n vertices are known to admit bisections of width O(logn) and O( √ n), respectively. We investigate the structure of graphs that meet this bound. In particular, we show that such a tree must have diameter O(n/ logn) and such a planar graph must have tree width Ω( √ n). To show the result for trees, we derive an inequality that relates the...

متن کامل

Roman domination excellent graphs: trees

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...

متن کامل

Conjecture on the maximum cut and bisection width in random regular graphs

Asymptotic properties of random regular graphs are object of extensive study in mathematics. In this note we argue, based on theory of spin glasses, that in random regular graphs the maximum cut size asymptotically equals the number of edges in the graph minus the minimum bisection size. Maximum cut and minimal bisection are two famous NP-complete problems with no known general relation between...

متن کامل

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.06411  شماره 

صفحات  -

تاریخ انتشار 2017